

 Navigation

 	
 index

 	
 next |

 	Solar 0.0.1 documentation

Welcome to Solar’s documentation!

Solar provides flexible orchestration and resource management framework for
deploying distributed systems. It leverages abstraction layer over commonly
used configuration management systems like puppet, ansible etc. to enable
complex, multi node orchestration.

Solar can be used as separate tool for quick prototyping deployment topology,
but as a framework it can be also integrated with existing tools used to
configure and deploy distributed systems including
OpenStack clouds. Solar also provides control over resulting changes by
introducing changes log and history for deployment entities. This enables more
control over lifecycle management of infrastructure.

Solar can deploy and manage any distributed system, focusing on OpenStack
ecosystem e.g. OpenStack itself, Ceph, etc. There are also other examples
like Riak.

Contents:

	Installation
	Local environment

	Usage
	Examples

	CLI API

	List of Solar tutorials
	Wordpress tutorial

	Developement environment
	Vagrant environment

	Contribution

	Solar Glossary
	Resource

	Handler

	Transport

	Event

	Composer

	System log component

	Orchestration component

	Solar Internal Architecture

	Resource
	Basic resource structure

	Handler

	Input

	Computable Inputs

	Action

	Tag

	Resource Repository
	Resource Repository spec

	Resource Repository import

	Resource Repository update

	Orchestration
	Entities

	Configuration

	Daemonizing solar-worker

	Deployment operations

	Transports
	How it works

	Sync transport

	Ssh host key checking

	Run transport

	BAT transport

	Examples
	Create resource for the puppet handler

	Preparing deployment plan
	Required information

	Changes

	Staged changes

	Events usage

	Deployment plan construction

	FAQ
	Why nodes/transports have hardcoded keys, ips and other inputs ?

	I want to use different SSH keys

	I want to use passwords not keys

	How can I run solar worker ?

	How can I configure solar ?

	What database can I use with solar ?

	Where can I find solar examples ?

Indices and tables

	Search Page

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

Installation

Please note that currently Solar is in a beta stage and it shouldn’t be used in
production environments.

We also recommend testing Solar using a vagrant where fully working development
environment will be created.

If you want to try Solar outside Vagrant jump to Local environment

Local environment

If you want to test Solar locally you may install it via pip:

pip install solar

Create solar configuration solar_config file and paste following data:

solar_db: sqlite:////tmp/solar.db

and set path to this configuration:

export SOLAR_CONFIG_OVERRIDE=<full/path/solar_config>

For more information about configuration see our FAQ questions:
here.

You also need to download Solar resources and
add them to a Solar repository.

git clone https://github.com/Mirantis/solar-resources

sudo mkdir -p /var/lib/solar/repositories
sudo chown -R <your_user_name> /var/lib/solar/

solar repo import -l solar-resources/resources/
solar repo import -l solar-resources/templates/

Next step is to start Solar orchestration worker.

solar-worker

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

Usage

To understand a workflow you should start with our
Wordpress tutorial.

Solar can be used in three ways. Using CLI Api, python API and Composer files.
The last one is showed in Wordpress tutorial.

Examples

Note

You need to have nodes resources created before running example. You can add them by calling
solar resource create nodes templates/nodes count=X where X is required nodes number

Each API is used in different examples:

Python API

	3 node cluster riak [https://github.com/Mirantis/solar-resources/blob/master/examples/riak/riaks.py]

	hosts files [https://github.com/Mirantis/solar-resources/blob/master/examples/hosts_file/hosts.py]

	2 node OpenStack Cluster [https://github.com/Mirantis/solar-resources/blob/master/examples/openstack/openstack.py]

Composer files

	Wordpress site [https://github.com/Mirantis/solar-resources/tree/master/examples/wordpress]

	3 node cluster riak [https://github.com/Mirantis/solar-resources/blob/master/examples/riak/riak_cluster.yaml]

CLI API

	Create some resources (look at
solar-resources/examples/openstack/openstack.py) and connect them between
each other, and place them on nodes.

	Run solar changes stage (this stages the changes)

	Run solar changes process (this prepares orchestrator graph, returning
change UUID)

	Run solar orch run-once <change-uuid> (or solar orch run-once last
to run the lastly created graph)

	Observe progress of orch with watch ‘solar orch report <change-uuid>’
(or watch ‘solar orch report last’).

Some very simple cluster setup:

solar resource create nodes templates/nodes count=1
solar resource create mariadb_service resources/mariadb_service '{"image": "mariadb:5.6", "root_password": "mariadb", "port": 3306}'
solar resource create keystone_db resources/mariadb_db/ '{"db_name": "keystone_db", "login_user": "root"}'
solar resource create keystone_db_user resources/mariadb_user/ user_name=keystone user_password=keystone # another valid format

solar connect node1 mariadb_service # it will mark mariadb_service to run on node1
solar connect node1 keystone_db
solar connect mariadb_service keystone_db '{"root_password": "login_password", "port": "login_port", "ip": "db_host"}'
solar connect keystone_db keystone_db_user

solar changes stage
solar changes process
solar orch run-once last # or solar orch run-once last
solar orch report last -w 1000 # or solar orch report last

You can fiddle with the above configuration like this:

solar resource update keystone_db_user '{"user_password": "new_keystone_password"}'
solar resource update keystone_db_user user_password=new_keystone_password # another valid format

solar changes stage
solar changes process
solar orch run-once last

To get data for the resource bar (raw and pretty-JSON):

solar resource show --tag 'resources/bar'
solar resource show --as_json --tag 'resources/bar' | jq .
solar resource show --name 'resource_name'
solar resource show --name 'resource_name' --json | jq .

To clear all resources/connections:

solar resource clear_all

Show the connections/graph:

solar connections show
solar connections graph

You can also limit graph to show only specific resources:

solar connections graph --start-with mariadb_service --end-with keystone_db

You can make sure that all input values are correct and mapped without
duplicating your values with this command:

solar resource validate

Disconnect

solar disconnect mariadb_service node1

Tag a resource:

solar resource tag node1 test-tags # Remove tags
solar resource tag node1 test-tag --delete

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

List of Solar tutorials

Contents:

	Wordpress tutorial

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

 	List of Solar tutorials

Wordpress tutorial

1. Introduction

In this tutorial we will create Worpdress site using docker containers. We will
create one container with Mysql database, then we will create database and user
for it. After that we will create Wordpress container which is running on
Apache.

In this tutorial we will use our vagrant environment. We need two virtual
machines. One where Solar database and Orchestrator will run and one where we
will install Wordpress and all components:

2. Solar installation

git clone https://github.com/openstack/solar.git
cd solar
vagrant up solar-dev solar-dev1
vagrant ssh solar-dev

3. Config resource

First we need to create Solar Resource definition where global configuration
will be stored. This will be a data container only, so it will not have any
handler nor actions. Let’s create base structure:

mkdir -p wp_repo/wp_config/1.0.0
touch wp_repo/wp_config/1.0.0/meta.yaml

Open meta file wp_repo/wp_config/1.0.0/meta.yaml with your favorite
text editor and paste the following data:

handler: none
version: 1.0.0
input:
 db_root_pass:
 schema: str!
 value:
 db_port:
 schema: int!
 value:
 wp_db_name:
 schema: str!
 value:
 wp_db_user:
 schema: str!
 value:
 wp_db_pass:
 schema: str!
 value:

Let’s go through this document line by line. handler: none says that this
resource has no handler and no actions. In next line we define version. The most
important part starts from line 3. We define there the inputs for this resource.
It will be possible to configure following inputs:

	db_root_pass - Mysql root password

	db_port - Mysql port

	wp_db_name - database name for Wordpress

	wp_db_user - database user name for Wordpress

	wp_db_pass - database user password for Wordpress

In schema it’s defined if input will be string or integer, ! at the end means
that the input is mandatory and value cannot be empty.

4. Composer file

All other required resources are already available in solar repositores:
resources and templates. We will use four more resources:

	resources/docker - it installs docker

	resources/docker_container - it manages docker container

	resources/mariadb_db - it creates database in MariaDB and Mysql

	resources/mariadb_user - it creates user in MariaDB and Mysql

There are three ways to create resources in Solar: Python API, CLI and Composer
files. We will use the last option. Composer file is just a simple yaml file
where we define all needed resources and connections. Run:

mkdir -p wp_repo/docker/1.0.0

Create new file wp_repo/docker/1.0.0/docker.yaml, open it and past the
following data:

resources:
 - id: docker
 from: resources/docker
 location: node1

 - id: config
 from: wp_repo/wp_config
 location: node1
 input:
 db_root_pass: 'r00tme'
 db_port: 3306
 wp_db_name: 'wp'
 wp_db_user: 'wp'
 wp_db_pass: 'h4ack'

 - id: mysql
 from: resources/docker_container
 location: node1
 input:
 ip: node1::ip
 image: mysql:5.6
 ports:
 - config::db_port
 env:
 MYSQL_ROOT_PASSWORD: config::db_root_pass
 wait_cmd:
 computable:
 func: "mysql -p{{env['MYSQL_ROOT_PASSWORD']}} -uroot -e 'SELECT 1'"
 connections:
 - mysql::env::NO_EVENTS

 - id: wp_db
 from: resources/mariadb_db
 location: node1
 input:
 db_name: config::wp_db_name
 db_host: mysql::ip
 login_user: 'root'
 login_password: config::db_root_pass
 login_port: config::db_port

 - id: wp_user
 from: resources/mariadb_user
 location: node1
 input:
 user_password: config::wp_db_pass
 user_name: config::wp_db_user
 db_name: wp_db::db_name
 db_host: mysql::ip
 login_user: 'root'
 login_password: config::db_root_pass
 login_port: config::db_port

 - id: wordpress
 from: resources/docker_container
 location: node1
 input:
 ip: node1::ip
 image: wordpress:latest
 env:
 WORDPRESS_DB_HOST: mysql::ip
 WORDPRESS_DB_USER: wp_user::user_name
 WORDPRESS_DB_PASSWORD: wp_user::user_password
 WORDPRESS_DB_NAME: wp_db::db_name

In block resources we define... resources. Each section is one resource. Each
resource definition has a following structure:

	id - resource name

	from - path to resource dir

	location - node where resource will be run

	values: initialization of a Resource Inputs

In location we define node1. It’s name of our virtual machine resource. It’s
not created yet, we will do it shortly.

In our configuration there are two formats which we use to assign values to
inputs. First:

db_port: 3306

It just means that input db_port will be set to 3306

Another format is:

login_port: config::db_port

This means that input login_port will have the same value as input db_port
from resource config. In Solar we call it Connection. When value of
db_port changes, value of login_port will also change.

wait_cmd is special, it’s computable input. In
wait_cmd input we define command which will be used to check if docker
container is ready. In this case it’s

`mysql -pr00tme -uroot -e 'SELECT 1`

Password for mysql is defined in config resource and can change at any time.
Instead of hard-coding it, computable input is used making this resource more
maintainable.

When all files are ready we need add created resources to solar repository:

solar repo import wp_repo

This command created new solar resource repository. To list resources in this
repository run:

solar repo show -r wp_repo

5. Deploying

Now it’s time to deploy our configuration. When running vagrant up solar-dev
solar-dev1 you started two virtual machines. We will deploy Wordpress on
solar-dev1. To do it we need to create a resource for it. We already have in
repo composer file which is doing it. Just run:

solar resource create nodes templates/nodes count=1

It will create all required resources to run actions on solar-dev1. You can
analyze content of templates/nodes/1.0.0/nodes.yaml later (that’s the source
for templates/nodes). Now we create resources defined in docker

solar resource create wp_docker wp_repo/docker

Command create requires name, but it’s not used by Composer.

Now you can deploy all changes with:

solar changes stage
solar changes process
solar orch run-once

To see deployment progress run:

solar orch report

Wait until all task will return status SUCCESS. When it’s done you should be
able to open Wordpress site at http://10.0.0.3

If it fails, before reporting a bug, please try to retry deployment:

solar orch retry last

6. Update

Now change password for Wordpress database user

solar resource update config wp_db_pass=new_hacky_pass

and deploy new changes

solar changes stage
solar changes process
solar orch run-once

Using report command wait until all tasks finish. Wordpress should still
working and new password should be used.

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

Developement environment

Vagrant environment

Currently for development we are using Vagrant.

Additional software

VirtualBox [https://www.virtualbox.org/wiki/Downloads/] 5.x,
or Libvirt [https://libvirt.org/]
Vagrant [http://www.vagrantup.com/downloads.html/] 1.7.4 or higher

Note: Make sure that Vagrant VirtualBox Guest plugin [https://github.com/dotless-de/vagrant-vbguest/] is installed

vagrant plugin install vagrant-vbguest

Note: If you are using VirtualBox 5.0 on Linux system, it’s worth uncommenting
paravirtprovider setting in vagrant-settings.yaml for speed improvements:

paravirtprovider: kvm

For details see Customizing vagrant-settings.yaml section.

Setup development env

Setup environment:

git clone https://github.com/openstack/solar
cd solar
vagrant up

Login into vm, the code is available in /vagrant directory

vagrant ssh
solar --help

Get ssh details for running slave nodes (vagrant/vagrant):

vagrant ssh-config

You can make/restore snapshots of boxes (this is way faster than reprovisioning
them)
with the snapshotter.py script:

./snapshotter.py take -n my-snapshot
./snapshotter.py show
./snapshotter.py restore -n my-snapshot

snapshoter.py to run requires python module click.

	On debian based systems you can install it via

sudo aptitude install python-click-cli,

	On fedora 22 you can install it via sudo dnf install python-click,

	If you use virtualenv or similar tool then you can install it just with

pip install click,

	If you don’t have virtualenv and your operating system does not provide

package for it then sudo pip install click.

	If you don’t have pip then

[install it](https://pip.pypa.io/en/stable/installing/) and then execute
command step 4.

Customizing vagrant-settings.yaml

Solar is shipped with sane defaults in vagrant-setting.yaml_defaults. If you
need to adjust them for your needs, e.g. changing resource allocation for
VirtualBox machines, you should just copy the file to vagrant-setting.yaml
and make your modifications.

Image based provisioning with Solar

	In vagrant-setting.yaml_defaults or vagrant-settings.yaml file uncomment
preprovisioned: false line.

	Run vagrant up, it will take some time because it builds image for
bootstrap and IBP images.

	Now you can run provisioning
/vagrant/solar-resources/examples/provisioning/provision.sh

To develop Solar we use Vagrant

Using Libvirt instead of Virtualbox

Virtualbox is a default provider for Vagrant, but it’s also possible to use
another providers. It should be possible to use any of Vagrant providers. As
for today we support Libvirt provider. It can be used only on Linux systems.

To use Libvirt with vagrant just run:

vagrant up --provider libvirt

This will download libvirt image for vagrant.

In nodes definition we have hardcoded ssh keys paths, where we assume that
Virtualbox is used. You need to copy keys to vagrant libvirt dir:

cp /vagrant/.vagrant/machines/solar-dev1/libvirt/private_key /vagrant/.vagrant/machines/solar-dev1/virtualbox/private_key

Or you can change path in node transport as described in
FAQ.

do it for each solar-dev* machine.

Note

Libvirt by default is using KVM. You cannot run KVM and Virtualbox
at the same time.

Contribution

To track development process we are using Launchpad. To see on what we are
currently working check Series and milestones [https://launchpad.net/solar].

Submiting patches

We are using OpenStack infrastructure to track code changes which is using
Gerrit. To see all proposed changes go to Solar panel [https://review.openstack.org/#/q/project:openstack/solar]

Reporting bugs

To trach bugs we are using Launchpad. You can see all Solar bugs
here [https://bugs.launchpad.net/solar]

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

Solar Glossary

Resource

Resource is an abstraction of item in system managed by Solar. It’s a basic
building block used to assemble your system. Almost every entity in Solar
is a resource.

You can learn more about it in resource details

Input

Resource configuration that will be used in actions, handlers and
orchestration. All known inputs for a resource should be defined in meta.yaml

Connection

Allows to build hierarchy between inputs of several resources, parent value
will be always used in child while connection is created. If connection is
removed - original value of child will be preserved.

Action

Solar wraps deployment code into actions with specific names. Actions are
executed from the resource.

Tag

Used to create arbitrary groups of resources, later this groups will be
used for different user operations.

Resource Repository

It is a named location where different Resource are located.

Handler

Layer responsible for action execution and tracking results.

Transport

Used in handlers to communicate with hosts managed by Solar.

See also

More details about transports

location_id

Used in transport layer to find ip address of a node.

'location_id': '96bc779540d832284680785ecd948a2d'

transports_id

Used to find transports array that will be used for transport selection.

'transports_id': '3889e1790e68b80b4f255cf0e13494b1'

BAT transport

According to preferences solar will choose best available transport for
file uploading and command execution.

Event

Used in solar to describe all possible transitions between resources changes.
Each event allows to specify two points of transitions, condition of this
transition and type of event.

Right now we are supporting 2 types of events:

	Dependency - inserts edge between 2 changes into the deployment plan.

	Reaction - inserts change specified in reaction and makes edge between parent
and child.

Example

type: depends_on
parent: nova-db
parent_action: run
child: nova-api
child_action: run
state: success // condition

Composer

Composition layer that allows user to:

	group resources

	specify connections between inputs

	add list of events

System log component

Component responsible for tracking changes and keeping ordered history of
them.

Staged log

Based on user changes - solar will create log of staged changes.
This log will be used later to build deployment plan.

History

After action that is related to change will be executed - it will be moved to
history with same uuid.

Committed resource data

After each successful change committed copy of resource data will be updated
with diff of that change.

Orchestration component

Deployment plan

Based on changes tracked by system log and configured events - solar build
deployment plan. In general deployment plan is built with

solar ch process

And can be viewed with

solar or dg last

Deployment plan operations

Solar cli provides several commands to work with deployment plan.

	run-once

	report

	stop

	resume/restart/retry

See also Orchestration

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

Solar Internal Architecture

[image: _images/solar_internal_architecture.png]

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

Resource

Resource is one of the key Solar components, almost every entity in Solar is a
resource. Examples are:

	packages

	services

Resources are defined in meta.yaml file. This file is responsible for basic
configuration of given resource. Below is an explanation what constitutes
typical resource.

Note

You can find example resources https://github.com/Mirantis/solar-resources

You can easily use this resource in your system,
from CLI you just need to call solar resource create with correct options.
During that operation solar will remember the version of this resource.

See also

Resource Repository

Basic resource structure

├── actions
│ ├── remove.pp
│ ├── run.pp
│ └── update.pp
└── meta.yaml

Handler

Pluggable layer that is responsible for executing an action on resource. You
need to specify handler per every resource. Handler is defined in meta.yaml
as below

handler: puppet

Solar currently supports following handlers:

	puppet - first version of puppet handler (legacy, will be deprecated soon)

	puppetv2 - second, improved version of puppet, supporting hiera integration

	ansible_playbook - handler that supports
more or less standard ansible playbooks

	ansible_template - handler that first generates ansible playbook
using jinja template first (it’s named ansible)

Handlers are pluggable, so you can write your own easily to extend
functionality of Solar. Interesting examples might be Chef, SaltStack,
CFEngine etc. Using handlers allows Solar to be quickly implemented in various
environments and integrate with already used configuration management tools.

Input

Inputs are essentially values that given resource can accept. Exact usage
depends on handler and actions implementation. If your handler is puppet,
inputs are basically parameters that can be accepted by puppet manifest
underneath.

All needed inputs should be defined in meta.yaml for example:

input:
 keystone_password:
 schema: str!
 value: 'keystone'
 keystone_enabled:
 schema: bool
 value: true
 keystone_tenant:
 schema: str
 value: 'services'
 keystone_user:
 schema: str
 value: 'cinder'

Input schema

Input definition contains basic schema validation that allows to validate if
all values are correct. ! at the end of a type means that it is required
(null value is not valid).

	string type str, str!

	integer type int, int!

	boolean type bool, bool!

	complex types:
	list of strings [str!]

	hash with values {a: str!}

	list with hashes [{a: str!}]

	list with lists [[]]

Input manipulation

There is possibility to add and remove inputs from given resource.
To do so you can use solar input add or solar input remove in Solar CLI.

Computable Inputs

Computable input is special input type, it shares all logic that standard input
has (connections etc), but you can set a function that will return final input
value.

Note

Remember, that you need to connect inputs to have it accessible in
Computable Inputs logic.

Currently you can write the functions using:

	Pure Python

	Jinja2 template

	LUA

Besides that there are 2 types of Computable Inputs:

	values
	all connected inputs are passed by value as D variable

	full
	all connected inputs are passed as array (python dict type) as R
variable, so you have full information about input.

In addition for jinja all connected inputs for current resource are
accessible as first level variables.

Change computable input

You can change Computable Input properties by calling solar input
change_computable in Solar CLI.

Action

Solar wraps deployment code into actions with specific names. Actions are
executed by Handler

Several actions of resource are mandatory:

	run

	remove

	update

You can just put files into actions subdir in your resource and solar will
detect them automatically based on their names, or you can also customize
action file names in meta.yaml

actions:
 run: run.pp
 update: run.pp

Tag

Tags are used for flexible grouping of resources. You can attach as many tags
to resource as you want, later you can use those tags for grouping etc

tags: [resource=hosts_file, tag_name=tag_value, just_some_label]

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

Resource Repository

Resource Repository takes care about Resource definitions and it
supports versioning.

Solar CLI supports following options:

add Adds new resource to repository
contains Checks if `spec` is in Solar repositories
destroy Destroys repository
import Imports repository to Solar
remove Removes `spec` from Solar repositories
show Shows all added repositories, or content of repository when `-r`
 given
update Updates existing repository with new content

Resource Repository spec

spec is in format {repository_name}/{resource_name}:{version_info},
version_info is optional if omitted, latest (highest) will be used. Versions
are in Semantic Versioning <http://semver.org/> format.
You can also use >, >=, ==, <, <= operators to specify matches.

Resource Repository import

Command solar repository import it allows you to import existing repository or
directory with resources into your system. It will traverse source path copy
all resources definitions into repository and obviously proper structure will be
automatically created.

Note

You may also check –link option to this command. It will just link
repository contents so to import you need to have proper structure before.

Resource Repository update

Command solar repository update will update repository content with new data.
With –overwrite flag it will overwrite conflicting resources definitions.

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

Orchestration

Contents:

	Entities

	Configuration

	Daemonizing solar-worker

	Deployment operations

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

 	Orchestration

Entities

Worker

Worker encapsulates logic related to certain area in solar.
Current we have next workers:

	Scheduler

	Correctly initates execution plans and updates state of tasks.

	Tasks

	Execute tasks scheduled by Scheduler worker

	System log

	Updates system log e.g. commits and moves log item from staged log
to history, or in case of error updates log item as erred

Executors

Each executor module should provide:

	Executor

	Executor responsible for processing events and handle them via given
worker. Concurrency policies is up to the executor implementation.

	Client

	Client communicates with executor

In current version of Solar we are using executor based on Push/Pull
zeromq sockets, and gevent pool for concurrent processing of events.

Subscriptions

Each public method of worker is subscribable, in current version
4 events are available to subscribers.

	on_success

	Called in the case of successful execution, provides context, result
and event arguments

	on_error

	Called in the case of error, prorives context, error type, event
arguments

	before

	Called before method execution, provides only context

	after

	Called after method executuon, provides only context

To subscribe use:

worker.method.on_sucess(callable)

Additionally each worker provides for_all descriptor which allows
to subscribe to all public methods:

worker.for_all.before(callable)

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

 	Orchestration

Configuration

Orchestration is configured using two different methods.

	Config options

	Entrypoints

Config options

system_log_address

Passed to executor which will run system log worker

tasks_address

Passed to executor which will run tasks worker

scheduler_address

Passed to executor which will run scheduler worker

executor

Driver name should be registered in entrypoints, see Executor namespace

tasks_driver

Driver name should be registered in appropriate entrypoints (see Worker driver namespaces)

scheduler_driver

Driver name should be registered in appropriate entrypoints (see Worker driver namespaces)

system_log_driver

Driver name should be registered in appropriate entrypoints (see Worker driver namespaces)

runner

Driver name should be registered in entrypoints (see Runner namespace)

Entrypoints

Executor namespace

Note

solar.orchestration.executors

One specified in configuration will be used.

Extensions namespace

Note

solar.orchestration.extensions

Using driver namespaces for each worker - loads all workers.

Worker driver namespaces

Note

solar.orchestration.drivers.tasks

solar.orchestration.drivers.scheduler

solar.orchestration.drivers.system_log

Only one driver can be selected from each namespace, see driver options
in config.

Constructor namespace

Note

solar.orchestration.constructors

Loads callables from this namespace and executes hooks connected
to those namespaces.

Constructor hooks namespaces

Note

solar.orchestration.hooks.tasks.construct

solar.orchestration.hooks.system_log.construct

solar.orchestration.hooks.scheduler.construct

All callables in each hook will be loaded and executed before spawning
executor with instance of worker. Currently all subscriptions are done
in this hooks.

Runner namespace

Note

solar.orchestration.runners

Runner should be selected in solar config. Runner will be executed
as a last step in solar-worker main function.

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

 	Orchestration

Daemonizing solar-worker

Upstart

To daemonize solar-worker on debian or ubuntu upstart script [https://github.com/openstack/solar/blob/master/utils/solar-worker.conf] should be used,
in script and pre-script stanzas - /etc/default/solar-worker will be sourced, and following variables used:

SOLAR_UID=solar
SOLAR_GID=solar
SOLAR_PIDFILE=/var/opt/solar/solar-worker.pid

Warning

SOLAR_UID and SOLAR_GID should be present in the system.

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

 	Orchestration

Deployment operations

Stage changes

After user created all required resource - it is possible to automatically
detect which resource requires changes with

solar changes stage

History

After changes are staged - they will be used to populate history which can be
previewed with command (n option used to limit number of items, -1 will
return all changes)

solar changes history -n 5

Prepare deployment plan

User is able to generate deployment scenario based on changes found by system
log.

solar changes process

This command will prepare deployment graph, and return uid of deployment graph
to work with.

All commands that are able to manipulate deployment graph located in
orch namespace.

Tip

Solar writes returned deployment graph uid into special file
(.solar_cli_uids), it allows you to use last instead of full returned
uid: solar orch report <uid> becomes solar orch report last

Report

Report will print all deployment tasks in topological order, with status,
and error if status of task is ERROR

solar orch report <uid>

Graphviz graph

To see picture of deployment dependencies one can use following command

solar orch dg <uid>

Keep in mind that it is not representation of all edges that are kept in graph,
we are using trasitive reduction to leave only edges that are important for the
order of traversal.

Run deployment

Execute deployment

solar orch run-once <uid>

Stop deployment

Gracefully stop deployment, after all already scheduled tasks are finished

solar orch stop <uid>

Resume deployment

Reset SKIPPED tasks to PENDING and continue deployment

solar orch resume <uid>

Restart deployment

All tasks will be returned to PENDING state, and deployment will be restarted

solar orch restart <uid>

Retry deployment

Orchestrator will reset all ERROR tasks to PENDING state and restart
deployment

solar orch retry <uid>

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

Transports

Transports are used by Solar to communicate with managed nodes.
Transports are also resources, so they have all resources features and
flexibility.
Transports should be added to a node, but if you need you can add different
transports for different resources.

How it works

Each resource in solar has a random transports_id generated,
when resources are connected to each other. Solar will ensure that correct
transport_id is used. Then using this transport_id a correct real value is
fetched. Changing transports contents will not cause resource.update action
for related resources.

Sync transport

This transport uploads required information to target node.

Currently there are following sync transports available:

	ssh

	rsync

	solar_agent

	torrent

Ssh host key checking

Solar wont disable strict host key checking by default, so before working with
solar ensure that strict host key checking is disabled, or all target hosts
added to .ssh/known_hosts file.

Example of .ssh/config

Host 10.0.0.*
 StrictHostKeyChecking no

Run transport

This transport is responsible for running commands on remote host.

Currently there are following run transports available:

	ssh

	solar_agent

BAT transport

A transport that will automatically select best available transport (BAT) that
is available for a given resource. Currently it’s default transport in the
system, so when you add more transports, everything should configure
automatically.

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

Examples

Create resource for the puppet handler

Let’s create an example Resource for the puppet
Handler version 1 [1]. The resource should install and
configure OpenStack Nova API service.

	[1]	There is also puppet handler version 2 but it is out of the scope
of this example.

Step 1: Find an appropriate puppet module

The Puppet OpenStack [https://wiki.openstack.org/wiki/Puppet]
module for Nova [https://github.com/openstack/puppet-nova]
provides all of the required functionality.

Step 2: Define granularity level for a resource

One may want to implement resources as atomic entities doing their only single
task, like running one and only puppet manifest [2]. Other option might be
single entity doing all required tasks instead. In order to configure and run
the Nova API service at least two manifests should be executed:
init.pp [https://github.com/openstack/puppet-nova/blob/master/manifests/init.pp]
and
api.pp [https://github.com/openstack/puppet-nova/blob/master/manifests/api.pp] [3].

	[2]	Puppet manifests may contain references to externally defined classess
or services in the catalog. Keep that in mind then designing the resource.

	[3]	This assumes configuring DB and messaging entities like user, password
database, vhost, access rights are left out of the scope of this example.

Assuming the atomic tasks approach, the example resource for Nova API service
should only use the api.pp manifest. Note that the puppet handler is normally
executed in its own isolated puppet catalog with its specific hiera data only.
This assumes every puppet manifest called by every action to be executed as a
separate puppet run and shares nothing with other tasks.

Step 3: Define resource inputs

Once the granularity level of the resource is clearly defined, one should
define the resource’s Input data. The puppet class nova::api
contains lots of parameters. It looks reasonable to use them as the resource
inputs as is.

Note

There is a helper script [https://github.com/bogdando/convert_puppet_parameters]
to convert a puppet class parameters into the format expected by the
meta.yaml inputs file.

Step 4: Implement basic action run

Each resource should have all of the mandatory actions defined. In this example
we define only the ref-action-term run. With the example of Nova API
resource, the action run should:

	fetch the resource inputs from the hiera [4]

$resource = hiera($::resource_name)
$ensure_package = $resource['input']['ensure_package']
$auth_strategy = $resource['input']['auth_strategy']

	[4]	The syntax is the puppet handler v1 specific. The v2 allows to query
the hiera directly, like $public_vip = hiera(‘public_vip’)

	call the class { ‘nova::api’: } with the required parameters

	implement workarounds for externally referenced entities, like

exec { 'post-nova_config':
 command => '/bin/echo "Nova config has changed"',
}

include nova::params

package { 'nova-common':
 name => $nova::params::common_package_name,
 ensure => $ensure_package,
}

Note

Otherwise, called class would assume the package and exec are
already included in the catalog by the init.pp. And would fail as
there is no class { ‘nova’: } call expected for the Nova API resource
action run.
In order to implement the resource without such workarounds, one should
rethink the granularity scope for the resource. And make sure the resource
contains required inputs for the main nova and nova::api classes and
call them both in the resource action run.

Step 5: Think of the rest of the resource actions

One should also design other actions for the resource. Mandatory are only
run, update and remove. There might be additional ones like on-fail,
on-retry or whichever are actually required to implement expected behavior.
For the given API resource there are no specific actions expected and there
is nothing to do for the action remove. For the action update, it is likely
the same steps should be done as for the action run.

Step 6: Design the high level functional test

TODO(bogdando) provide details about test.py and writing tests for Nova API
in order to verify if it works on the app level.

Step 7: Think of the deployment composition

The deployment composition is which resources should be used and in which order
it should be executed to achieve the expected result, which is a successful
Deployment plan. For the given example, the composition may be as
following:

	Install and configure MySQL DB [5]

	Install and configure RabbitMQ node

	Install and configure dependency components like OpenStack Keystone

	Create all of the required user/tenant/db/vhost entities and assign rights

	Install and configure Nova main components, like packages, db sync, configs.

	Install and configure Nova API. BINGO! A job for our resource, at last!

	[5]	Omitted host related steps like OS provisioning, disks and network
configuration.

Besides the execution plan, there is also data Connection
to be considered. For example, one might want to have all of the OpenStack
services to use the common RabbitMQ virtualhost and user. Or have them
separated instead. Or use the clustered RabbitMQ nodes. These decisions
will directly impact how resources’ inputs should be connected.

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Solar 0.0.1 documentation

Preparing deployment plan

Solar allows you to make transitions between different versions of
infrastructure based on changes found by solar control plane and events
configured between this changes.

Required information

	Input

	Orchestration

Changes

By changes in solar we understand everything that is explicitly made by
user (human/program). Examples of changes are:
- create resource
- remove resource
- update value manually
- update value using hierarchy

Staged changes

On demand solar runs procedure that will find all resources changed from last
deployment and will determine list of actions using transitions from solar
state machine .

This procedure is performed by

solar changes stage -d

It prints information like

log task=openrc_file.run uid=e852455d-49d9-41f1-b49c-4640e2e19944
 ++ ip: 10.0.0.3
 ++ location_id: 694b35afa622da857f95e14a21599d81
 ++ keystone_port: 35357
 ++ transports_id: abc7745f2ad63709b5845cecfa759ff5
 ++ keystone_host: 10.0.0.3
 ++ password: admin
 ++ user_name: admin
 ++ tenant: admin
log task=neutron_db.run uid=95cac02b-01d0-4e2f-adb9-4205a2cf6dfb
 ++ login_port: 3306
 ++ encoding: utf8
 ++ login_user: root
 ++ login_password: mariadb
 ++ transports_id: abc7745f2ad63709b5845cecfa759ff5
 ++ db_name: neutron_db
 ++ db_host: 10.0.0.3
 ++ ip: 10.0.0.3
 ++ collation: utf8_general_ci
 ++ location_id: 694b35afa622da857f95e14a21599d81

At this point information is stored as a list, and user doesn’t know anything
about dependencies between found changes.

Events usage

For events definition see Event.

Events are used during this procedure to insert dependencies between found
changes, and to add new actions that are reactions for changes.

Example of dependency between changes would be nova service that depends
on successful creation of database.

For removal we might add dependencies that will allow reverse order, e.g. when
removing nova service and database, database will be removed only after
successful nova service removal.

This can be specified as

Dependency database1.run -> nova1.run
Dependency nova1.remove -> database1.remove

Reaction allows to construct more advanced workflows that will take into
account not only changes, but also arbitrary actions for resources in solar.

Good example of usage is provisioning procedure, where reboot must be
done only after node is provisioned, and dnsmasq configuration changes to
reflect that that node is now using statically allocated address.
We can specify such ordering as

React node1.run -> node1.reboot
React node1.run -> dnsmasq1.change_ip
Dependency dnsmasq1.change_ip -> node1.reboot

Deployment plan construction

Using list of staged changes and graph events we can proceed with construction
of deployment plan for current version of infrastructure

solar changes process

After this deployment command plan can be viewed by

graphviz representation
solar orch dg last

text report
solar orch report last

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Solar 0.0.1 documentation

FAQ

Why nodes/transports have hardcoded keys, ips and other inputs ?

This is temporary situation, we will improve it in near future.

I want to use different SSH keys

Just update resource for example:

solar resource update ssh_transport1 '{"key": "/path/to/some/key"}'

I want to use passwords not keys

Just update resource:

solar resource update rsync1 '{"password": "vagrant", "key": null}'

Note

You need to change it for all transport resources (ssh and rsync by default).

How can I run solar worker ?

	If you use vagrant then you can just sudo start solar-worker

as vagrant user.

How can I configure solar ?

There are several places where we search for config values:

	.config file in CWD or in path from SOLAR_CONFIG env variable

2. if env SOLAR_CONFIG_OVERRIDE contains valid path then it override previous
values
3. .config.override in CWD
4. You can also set upper-cased env variable which matches one of those in
config

What database can I use with solar ?

By default for simplicity we use sqlite. On our vagrant environment we use
single node riak.
You can also use multiple nodes riak, with some strong consistent buckets.

Where can I find solar examples ?

Example resources, composer templates and examples itself are located:
https://github.com/Mirantis/solar-resources

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Solar 0.0.1 documentation

Index

 Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

 _static/down.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_images/solar_internal_architecture.png
Node

Action handler

Transports

Sync Run
Transport Transport

Action handler

Orchestration

Changes subsystem

Acti " Solar Solar Solar
ction executor 2 task task task
8 Commited
= lo
2 9 Solar Solar Commit
] task task
Resource

DB Layer |

B

fuel_modular_tasks.html

 Navigation

 		
 index

 		Solar 0.0.1 documentation »

Running Fuel tasks in Solar

Workflow

		Deploy Fuel master node

		Provision nodes fuel node --node 1,2,3 --provision

		Create /var/lib/astute directory on nodes

		Run upload_core_repos task fuel node --node 1,2,3 --tasks
upload_core_repos

		Configure /etc/puppet/hiera.yaml and create /etc/puppet/hieradata
directory on slaves

		:backends:

		- yaml

		:yaml:

		:datadir: /etc/puppet/hieradata

		:json:

		:datadir: /etc/puppet/hieradata

		:hierarchy:

		- “%{resource_name}”

- resource

		Distribute keys and certs

scp /var/lib/astute/ceph/ceph* root@node-1:/var/lib/astute/ceph/

sh /etc/puppet/modules/osnailyfacter/modular/astute/generate_haproxy_keys.sh -i 1 -h public.fuel.local -o ‘haproxy’ -p /var/lib/fuel/keys/

scp /var/lib/fuel/keys/1/haproxy/public_haproxy.pem root@node-1:/var/lib/astute/haproxy/public_haproxy.pem

scp /var/lib/fuel/keys/1/haproxy/public_haproxy.crt root@node-1:/etc/pki/tls/certs/public_haproxy.pem

		To use solar on Fuel master we need to use containers because of python2.6
there. Also Solar by itself relies on several services

yum -y install git

git clone -b f2s https://github.com/dshulyak/solar.git

docker run –name riak -d -p 8087:8087 -p 8098:8098 tutum/riak

docker run –name redis -d -p 6379:6379 -e REDIS_PASS=**None** tutum/redis

docker run –name solar -d -v /root/solar/solar:/solar -v /root/solar/solard:/solard -v /root/solar/templates:/templates -v /root/solar/resources:/resources -v /root/solar/f2s:/f2s -v /var/lib/fuel:/var/lib/fuel -v /root/.config/fuel/fuel _client.yaml:/etc/fuel/client/config.yaml -v /etc/puppet/modules:/etc/puppet/modules -v /root/.ssh:/root/.ssh –link=riak:riak –link=redis:redis solarproject/solar-celery:f2s

		Go inside the solar container

docker exec -ti solar bash

		Prepare transport for master and nodes, generate keys, create tasks and apply
composer files on nodes

./f2s/fsclient.py master 1

./f2s/fsclient.py nodes 1 2 3

./f2s/fsclient.py prep 1 2 3

./f2s/fsclient.py roles 1 2 3

10. Update resource inputs from nailgun for all nodes
solar res prefetch -n role_data1

11. Create deployment scenario
solar ch stage && solar ch process

12. Run Solar deployment
solar or run-once last

13. Enjoy deployment, you can check status using
solar o report

fsclient.py

This script helps to create solar resources with data from nailgun.
Note, you should run it inside of the solar container.

./f2s/fsclient.py master 1
Accepts cluster id, prepares transports for master + generate keys task
for current cluster.

./f2s/fsclient.py nodes 1
Prepares transports for provided nodes, ip and cluster id fetchd from nailgun.

./f2s/fsclient.py prep 1
Creates tasks for syncing keys + fuel-library modules.

./f2s/fsclient.py roles 1
Based on roles stored in nailgun it will assign vrs/<role>.yaml to a given
node. Right now it takes time, so please be patient.

Fetching data from nailgun

Special entity which allows to fetch data from any source before any actual
deployment. This entity provides mechanism to specify manager for resources
(or list them). Manager accepts inputs as json in stdin, and outputs result in
stdout, with result of manager execution we are updating solar storage.

Examples can be found at f2s/resources/role_data/managers.
Data can be fetched by solar command

solar res prefetch -n <resource name>

Troubleshooting

		To regenerate the deployment data run

solar res clear_all

and repeat all fsclient.py tasks and fetching from nailgun data steps.

		To skip any resources you should mark them using

solar or noop last -t ironic-api5.run

		To retry all failed resources and proceed

solar or retry last

		If you see any strange SSH/transport errors in solar report run

ansible-playbook -v -i "localhost," -c local /celery.yaml --skip-tags slave

		You can run particular resource by

solar res action run openstack-haproxy-ironic5

		Deployment can be debugged using

tail -f /var/run/celery/celery2.log

		If there are any Fuel plugin installed, you should manually

create a stanza for it in the ./f2s/resources/role_data/meta.yaml,
like below and regenerate the data from nailgun

input:
 foo_plugin_name:
 value: null

 © Copyright 2015-present, OpenStack Foundation..
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up.png

_static/solar_internal_architecture.png
Node

Action handler

Transports

Sync Run
Transport Transport

Action handler

Orchestration

Changes subsystem

Acti " Solar Solar Solar
ction executor 2 task task task
8 Commited
= lo
2 9 Solar Solar Commit
] task task
Resource

DB Layer |

B

_static/file.png

_static/ajax-loader.gif

_static/comment-close.png

