
Solar Documentation
Release 0.0.1

OpenStack Foundation

January 28, 2016

Contents

1 Installation 3
1.1 Supported development platforms . 3
1.2 Vagrant environment . 3
1.3 Local environment . 4

2 Usage 7
2.1 Examples . 7
2.2 CLI API . 7

3 List of Solar tutorials 9
3.1 Wordpress tutorial . 9

4 Solar Glossary 15
4.1 Resource . 15
4.2 Handler . 15
4.3 Transport . 16
4.4 Event . 16
4.5 Composer . 16
4.6 System log component . 17
4.7 Orchestration component . 17

5 Solar Internal Architecture 19

6 Resource 21
6.1 Basic resource structure . 21
6.2 Handler . 21
6.3 Input . 22
6.4 Computable Inputs . 22
6.5 Action . 23
6.6 Tag . 23

7 Resource Repository 25
7.1 Resource Repository spec . 25
7.2 Resource Repository import . 25
7.3 Resource Repository update . 25

8 Deployment operations 27
8.1 Stage changes . 27
8.2 History . 27

i

8.3 Prepare deployment plan . 27
8.4 Report . 27
8.5 Graphviz graph . 28
8.6 Run deployment . 28
8.7 Stop deployment . 28
8.8 Resume deployment . 28
8.9 Restart deployment . 28
8.10 Retry deployment . 28

9 Transports 29
9.1 How it works . 29
9.2 Sync transport . 29
9.3 Ssh host key checking . 29
9.4 Run transport . 30
9.5 BAT transport . 30

10 Ansible Handler 31

11 Examples 33
11.1 Create resource for the puppet handler . 33

12 Preparing deployment plan 37
12.1 Required information . 37
12.2 Changes . 37
12.3 Staged changes . 37
12.4 Events usage . 38
12.5 Deployment plan construction . 38

13 FAQ 39
13.1 Why nodes/transports have hardcoded keys, ips and other inputs ? 39
13.2 I want to use different SSH keys . 39
13.3 I want to use passwords not keys . 39
13.4 How can I run solar worker ? . 39
13.5 How can I configure solar ? . 39
13.6 What database can I use with solar ? . 40
13.7 Where can I find solar examples ? . 40

14 Indices and tables 41

ii

Solar Documentation, Release 0.0.1

Contents:

Contents 1

Solar Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Installation

Please note that currently Solar is in a beta stage and it shouldn’t be used on production.

We also recommend testing Solar in a vagrant env where fully working development environment will be created.

If you want to try Solar outside Vagrant jump to Local environment

1.1 Supported development platforms

Linux or MacOS

1.2 Vagrant environment

1.2.1 Additional software

VirtualBox 5.x, Vagrant 1.7.x

Note: Make sure that Vagrant VirtualBox Guest plugin is installed

vagrant plugin install vagrant-vbguest

Note: If you are using VirtualBox 5.0 on Linux system, it’s worth uncommenting paravirtprovider setting in vagrant-
settings.yaml for speed improvements:

paravirtprovider: kvm

For details see Customizing vagrant-settings.yaml section.

1.2.2 Setup development env

Setup environment:

git clone https://github.com/openstack/solar
cd solar
vagrant up

Login into vm, the code is available in /vagrant directory

3

https://www.virtualbox.org/wiki/Downloads/
http://www.vagrantup.com/downloads.html/
https://github.com/dotless-de/vagrant-vbguest/

Solar Documentation, Release 0.0.1

vagrant ssh
solar --help

Get ssh details for running slave nodes (vagrant/vagrant):

vagrant ssh-config

You can make/restore snapshots of boxes (this is way faster than reprovisioning them) with the snapshotter.py script:

./snapshotter.py take -n my-snapshot

./snapshotter.py show

./snapshotter.py restore -n my-snapshot

snapshoter.py to run requires python module click.

• On debian based systems you can install it via

sudo aptitude install python-click-cli,

• On fedora 22 you can install it via sudo dnf install python-click,

• If you use virtualenv or similar tool then you can install it just with

pip install click,

• If you don’t have virtualenv and your operating system does not provide

package for it then sudo pip install click.

• If you don’t have pip then

[install it](https://pip.pypa.io/en/stable/installing/) and then execute command step 4.

1.2.3 Customizing vagrant-settings.yaml

Solar is shipped with sane defaults in vagrant-setting.yaml_defaults. If you need to adjust them for your needs, e.g.
changing resource allocation for VirtualBox machines, you should just copy the file to vagrant-setting.yaml and make
your modifications.

1.2.4 Image based provisioning with Solar

• In vagrant-setting.yaml_defaults or vagrant-settings.yaml file uncomment preprovisioned: false line.

• Run vagrant up, it will take some time because it builds image for bootstrap and IBP images.

• Now you can run provisioning /vagrant/solar-resources/examples/provisioning/provision.sh

1.3 Local environment

If you want to test Solar locally you may install it via pip:

pip install solar

Create solar configuration solar_config and paste following data:

solar_db: sqlite:////tmp/solar.db

4 Chapter 1. Installation

https://pip.pypa.io/en/stable/installing/

Solar Documentation, Release 0.0.1

and set path to this configuration:

For more information about configuration see our FAQ questions: here.

You also need to download Solar resources and add them to a Solar repository.

git clone https://github.com/Mirantis/solar-resources

sudo mkdir -p /var/lib/solar/repositories
sudo chown -R <your_user_name> /var/lib/solar/

solar repo import -l solar-resources/resources/
solar repo import -l solar-resources/templates/

Next step is to start Solar orchestration worker.

solar-worker

1.3. Local environment 5

Solar Documentation, Release 0.0.1

6 Chapter 1. Installation

CHAPTER 2

Usage

To understand a workflow you should start with our Wordpress tutorial.

Solar can be used in three ways. Using CLI Api, python API and Composer files. The last one is showed in Wordpress
tutorial.

2.1 Examples

Each API is used in different examples:

2.1.1 Python API

• 3 node cluster riak

• hosts files

• 2 node Openstack Cluster

2.1.2 Composer files

• Wordpress site

• 3 node cluster riak

2.2 CLI API

1. Create some resources (look at solar-resources/examples/openstack/openstack.py) and connect them between
each other, and place them on nodes.

2. Run solar changes stage (this stages the changes)

3. Run solar changes process (this prepares orchestrator graph, returning change UUID)

4. Run solar orch run-once <change-uuid> (or solar orch run-once last to run the lastly created graph)

5. Observe progress of orch with watch ‘solar orch report <change-uuid>’ (or watch ‘solar orch report last’).

Some very simple cluster setup:

7

https://github.com/Mirantis/solar-resources/blob/master/examples/riak/riaks.py
https://github.com/Mirantis/solar-resources/blob/master/examples/hosts_file/hosts.py
https://github.com/Mirantis/solar-resources/blob/master/examples/openstack/openstack.py
https://github.com/Mirantis/solar-resources/tree/master/examples/wordpress
https://github.com/Mirantis/solar-resources/blob/master/examples/riak/riak_cluster.yaml

Solar Documentation, Release 0.0.1

solar resource create nodes templates/nodes count=1
solar resource create mariadb_service resources/mariadb_service '{"image": "mariadb:5.6", "root_password": "mariadb", "port": 3306}'
solar resource create keystone_db resources/mariadb_db/ '{"db_name": "keystone_db", "login_user": "root"}'
solar resource create keystone_db_user resources/mariadb_user/ user_name=keystone user_password=keystone # another valid format

solar connect node1 mariadb_service # it will mark mariadb_service to run on node1
solar connect node1 keystone_db
solar connect mariadb_service keystone_db '{"root_password": "login_password", "port": "login_port", "ip": "db_host"}'
solar connect keystone_db keystone_db_user

solar changes stage
solar changes process
solar orch run-once last # or solar orch run-once last
solar orch report last -w 1000 # or solar orch report last

You can fiddle with the above configuration like this:

solar resource update keystone_db_user '{"user_password": "new_keystone_password"}'
solar resource update keystone_db_user user_password=new_keystone_password # another valid format

solar changes stage
solar changes process
solar orch run-once last

To get data for the resource bar (raw and pretty-JSON):

solar resource show --tag 'resources/bar'
solar resource show --as_json --tag 'resources/bar' | jq .
solar resource show --name 'resource_name'
solar resource show --name 'resource_name' --json | jq .

To clear all resources/connections:

solar resource clear_all

Show the connections/graph:

solar connections show
solar connections graph

You can also limit graph to show only specific resources:

solar connections graph --start-with mariadb_service --end-with keystone_db

You can make sure that all input values are correct and mapped without duplicating your values with this command:

solar resource validate

Disconnect

solar disconnect mariadb_service node1

Tag a resource:

solar resource tag node1 test-tags # Remove tags
solar resource tag node1 test-tag --delete

8 Chapter 2. Usage

CHAPTER 3

List of Solar tutorials

Contents:

3.1 Wordpress tutorial

3.1.1 1. Introduction

In this tutorial we will create Worpdress site using docker containers. We will create one container with Mysql
database, then we will create database and user for it. After that we will create Wordpress container which is running
on Apache.

In this tutorial we will use our vagrant environment. We need two virtual machines. One where Solar database and
Orchestrator will run and one where we will install Wordpress and all components:

3.1.2 2. Solar installation

git clone https://github.com/openstack/solar.git
cd solar
vagrant up solar-dev solar-dev1
vagrant ssh solar-dev
cd /vagrant

Note: For now please assume that all solar commands are run from dir /vagrant

3.1.3 3. Config resource

First we need to create Solar Resource definition where global configuration will be stored. This will be a data
container only, so it will not have any handler nor actions. Let’s create base structure:

mkdir /tmp/wp_repo
mkdir /tmp/wp_repo/1.0.0/wp_config
touch /tmp/wp_repo/1.0.0/wp_config/meta.yaml

Open meta file /vagrant/tmp/wp_repo/wp_config/meta.yaml with your favorite text editor and paste the following data:

9

Solar Documentation, Release 0.0.1

handler: none
version: 1.0.0
input:

db_root_pass:
schema: str!
value:

db_port:
schema: int!
value:

wp_db_name:
schema: str!
value:

wp_db_user:
schema: str!
value:

wp_db_pass:
schema: str!
value:

Let’s go through this document line by line. handler: none says that this resource has no handler and no actions. In
next line we define version. The most important part starts from line 3. We define there the inputs for this resource. It
will be possible to configure following inputs:

• db_root_pass - Mysql root password

• db_port - Mysql port

• wp_db_name - database name for Wordpress

• wp_db_user - database user name for Wordpress

• wp_db_pass - database user password for Wordpress

In schema it’s defined if input will be string or integer, ! at the end means that the input is mandatory and value cannot
be empty.

3.1.4 4. Composer file

All other required resources are already available in solar repositores: resources and templates. We will use four more
resources:

• resources/docker - it installs docker

• resources/docker_container - it manages docker container

• resources/mariadb_db - it creates database in MariaDB and Mysql

• resources/mariadb_user - it creates user in MariaDB and Mysql

There are three ways to create resources in Solar: Python API, CLI and Composer files. We will use the last option.
Composer file is just a simple yaml file where we define all needed resources and connections.

Create new file /vagrant/tmp/wp_repo/docker.yaml, open it and past the following data:

resources:
- id: docker
from: resources/docker
location: node1

- id: config
from: wp_repo/wp_config

10 Chapter 3. List of Solar tutorials

Solar Documentation, Release 0.0.1

location: node1
input:

db_root_pass: 'r00tme'
db_port: 3306
wp_db_name: 'wp'
wp_db_user: 'wp'
wp_db_pass: 'h4ack'

- id: mysql
from: resources/docker_container
location: node1
input:

ip: node1::ip
image: mysql:5.6
ports:

- config::db_port
env:

MYSQL_ROOT_PASSWORD: config::db_root_pass
wait_cmd:

computable:
func: "mysql -p{{env['MYSQL_ROOT_PASSWORD']}} -uroot -e 'SELECT 1'"
connections:

- mysql::env::NO_EVENTS

- id: wp_db
from: resources/mariadb_db
location: node1
input:

db_name: config::wp_db_name
db_host: mysql::ip
login_user: 'root'
login_password: config::db_root_pass
login_port: config::db_port

- id: wp_user
from: resources/mariadb_user
location: node1
input:

user_password: config::wp_db_pass
user_name: config::wp_db_user
db_name: wp_db::db_name
db_host: mysql::ip
login_user: 'root'
login_password: config::db_root_pass
login_port: config::db_port

- id: wordpress
from: resources/docker_container
location: node1
input:

ip: node1::ip
image: wordpress:latest
env:

WORDPRESS_DB_HOST: mysql::ip
WORDPRESS_DB_USER: wp_user::user_name
WORDPRESS_DB_PASSWORD: wp_user::user_password
WORDPRESS_DB_NAME: wp_db::db_name

3.1. Wordpress tutorial 11

Solar Documentation, Release 0.0.1

In block resources we define... resources. Each section is one resource. Each resource definition has a following
structure:

• id - resource name

• from - path to resource dir

• location - node where resource will be run

• values: initialization of a Resource Inputs

In location we define node1. It’s name of our virtual machine resource. It’s not created yet, we will do it shortly.

In our configuration there are two formats which we use to assign values to inputs. First:

db_port: 3306

It just means that input db_port will be set to 3306

Another format is:

login_port: config::db_port

This means that input login_port will have the same value as input db_port from resource config. In Solar we call it
Connection. When value of db_port changes, value of login_port will also change.

wait_cmd is special, it’s computable input. In wait_cmd input we define command which will be used to check if
docker container is ready. In this case it’s

`mysql -pr00tme -uroot -e 'SELECT 1`

Password for mysql is defined in config resource and can change at any time. Instead of hard-coding it, computable
input is used making this resource more maintainable.

When all files are ready we need add created resources to solar repository:

solar repo import tmp/wp_repo

This command created new solar resource repository. To list resources in this repository run:

solar repo show -r wp_repo

3.1.5 5. Deploying

Now it’s time to deploy our configuration. When running vagrant up solar-dev solar-dev1 you started two virtual
machines. We will deploy Wordpress on solar-dev1. To do it we need to create a resource for it. We already have in
repo composer file which is doing it. Just run:

solar resource create nodes templates/nodes count=1

It will create all required resources to run actions on solar-dev1. You can analyze content of tem-
plates/nodes/1.0.0/nodes.yaml later (that’s the source for templates/nodes). Now we create resources defined in docker

solar resource create wp_docker wp_repo/docker

Command create requires name, but it’s not used by Composer.

Now you can deploy all changes with:

solar changes stage
solar changes process
solar orch run-once

12 Chapter 3. List of Solar tutorials

Solar Documentation, Release 0.0.1

To see deployment progress run:

solar orch report

Wait until all task will return status SUCCESS. When it’s done you should be able to open Wordpress site at
http://10.0.0.3

If it fails, before reporting a bug, please try to retry deployment:

solar orch retry last

3.1.6 6. Update

Now change password for Wordpress database user

solar resource update config wp_db_pass=new_hacky_pass

and deploy new changes

solar changes stage
solar changes process
solar orch run-once

Using report command wait until all tasks finish. Wordpress should still working and new password should be used.

3.1. Wordpress tutorial 13

http://10.0.0.3

Solar Documentation, Release 0.0.1

14 Chapter 3. List of Solar tutorials

CHAPTER 4

Solar Glossary

4.1 Resource

Resource is an abstraction of item in system managed by Solar. It’s a basic building block used to assemble your
system. Almost every entity in Solar is a resource.

You can learn more about it in resource details

4.1.1 Input

Resource configuration that will be used in actions, handlers and orchestration. All known inputs for a resource should
be defined in meta.yaml

4.1.2 Connection

Allows to build hierarchy between inputs of several resources, parent value will be always used in child while connec-
tion is created. If connection is removed - original value of child will be preserved.

4.1.3 Action

Solar wraps deployment code into actions with specific names. Actions are executed from the resource.

4.1.4 Tag

Used to create arbitrary groups of resources, later this groups will be used for different user operations.

4.1.5 Resource Repository

It is a named location where different Resource are located.

4.2 Handler

Layer responsible for action execution and tracking results.

15

Solar Documentation, Release 0.0.1

4.3 Transport

Used in handlers to communicate with hosts managed by Solar.

See also:

More details about transports

4.3.1 location_id

Used in transport layer to find ip address of a node.

'location_id': '96bc779540d832284680785ecd948a2d'

4.3.2 transports_id

Used to find transports array that will be used for transport selection.

'transports_id': '3889e1790e68b80b4f255cf0e13494b1'

4.3.3 BAT transport

According to preferences solar will choose best available transport for file uploading and command execution.

4.4 Event

Used in solar to describe all possible transitions between resources changes. Each event allows to specify two points
of transitions, condition of this transition and type of event.

Right now we are supporting 2 types of events:

1. Dependency - inserts edge between 2 changes into the deployment plan.

2. Reaction - inserts change specified in reaction and makes edge between parent and child.

Example

type: depends_on
parent: nova-db
parent_action: run
child: nova-api
child_action: run
state: success // condition

4.5 Composer

Composition layer that allows user to:

• group resources

• specify connections between inputs

• add list of events

16 Chapter 4. Solar Glossary

Solar Documentation, Release 0.0.1

4.6 System log component

Component responsible for tracking changes and keeping ordered history of them.

4.6.1 Staged log

Based on user changes - solar will create log of staged changes. This log will be used later to build deployment plan.

4.6.2 History

After action that is related to change will be executed - it will be moved to history with same uuid.

4.6.3 Committed resource data

After each successful change committed copy of resource data will be updated with diff of that change.

4.7 Orchestration component

4.7.1 Deployment plan

Based on changes tracked by system log and configured events - solar build deployment plan. In general deployment
plan is built with

solar ch process

And can be viewed with

solar or dg last

4.7.2 Deployment plan operations

Solar cli provides several commands to work with deployment plan.

• run-once

• report

• stop

• resume/restart/retry

See also Deployment operations

4.6. System log component 17

Solar Documentation, Release 0.0.1

18 Chapter 4. Solar Glossary

19

Solar Documentation, Release 0.0.1

CHAPTER 5

Solar Internal Architecture

20 Chapter 5. Solar Internal Architecture

CHAPTER 6

Resource

Resource is one of the key Solar components, almost every entity in Solar is a resource. Examples are:

• packages

• services

Resources are defined in meta.yaml file. This file is responsible for basic configuration of given resource. Below is
an explanation what constitutes typical resource.

Note: You can find example resources https://github.com/Mirantis/solar-resources

6.1 Basic resource structure

-- actions
| -- remove.pp
| -- run.pp
| -- update.pp
-- meta.yaml

6.2 Handler

Pluggable layer that is responsible for executing an action on resource. You need to specify handler per every resource.
Handler is defined in meta.yaml as below

handler: puppet

Solar currently supports following handlers:

• puppet - first version of puppet handler (legacy, will be deprecated soon)

• puppetv2 - second, improved version of puppet, supporting hiera integration

• ansible_playbook - first version of ansible handler (legacy, will be deprecated soon)

• ansible_template - second generation of ansible implementation, includes transport support

Handlers are pluggable, so you can write your own easily to extend functionality of Solar. Interesting examples might
be Chef, SaltStack, CFEngine etc. Using handlers allows Solar to be quickly implemented in various environments
and integrate with already used configuration management tools.

21

https://github.com/Mirantis/solar-resources

Solar Documentation, Release 0.0.1

6.3 Input

Inputs are essentially values that given resource can accept. Exact usage depends on handler and actions implementa-
tion. If your handler is puppet, inputs are basically parameters that can be accepted by puppet manifest underneath.

All needed inputs should be defined in meta.yaml for example:

input:
keystone_password:

schema: str!
value: 'keystone'

keystone_enabled:
schema: bool
value: true

keystone_tenant:
schema: str
value: 'services'

keystone_user:
schema: str
value: 'cinder'

6.3.1 Input schema

Input definition contains basic schema validation that allows to validate if all values are correct. ! at the end of a type
means that it is required (null value is not valid).

• string type str, str!

• integer type int, int!

• boolean type bool, bool!

• complex types:

– list of strings [str!]

– hash with values {a: str!}

– list with hashes [{a: str!}]

– list with lists [[]]

6.3.2 Input manipulation

There is possibility to add and remove inputs from given resource. To do so you can use solar input add or
solar input remove in Solar CLI.

6.4 Computable Inputs

Computable input is special input type, it shares all logic that standard input has (connections etc), but you can set a
function that will return final input value.

Note: Remeber, that you need to connect inputs to have it accessible in Computable Inputs logic.

Currently you can write the functions using:

22 Chapter 6. Resource

Solar Documentation, Release 0.0.1

• Pure Python

• Jinja2 template

• LUA

Besides that there are 2 types of Computable Inputs:

• values

– all connected inputs are passed by value as D variable

• full

– all connected inputs are passed as array (python dict type) as R variable, so you have full information about
input.

In addition for jinja all connected inputs for current resource are accessible as first level variables.

6.4.1 Change computable input

You can change Computable Input properties by calling solar input change_computable in Solar CLI.

6.5 Action

Solar wraps deployment code into actions with specific names. Actions are executed by Handler

Several actions of resource are mandatory:

• run

• remove

• update

You can just put files into actions subdir in your resource and solar will detect them automatically based on their
names, or you can also customize action file names in meta.yaml

actions:
run: run.pp
update: run.pp

6.6 Tag

Tags are used for flexible grouping of resources. You can attach as many tags to resource as you want, later you can
use those tags for grouping etc

tags: [resource=hosts_file, tag_name=tag_value, just_some_label]

6.5. Action 23

Solar Documentation, Release 0.0.1

24 Chapter 6. Resource

CHAPTER 7

Resource Repository

Resource Repository takes care about Resource definitions and it supports versioning.

Solar CLI supports following options:

add Adds new resource to repository
contains Checks if `spec` is in Solar repositories
destroy Destroys repository
import Imports repository to Solar
remove Removes `spec` from Solar repositories
show Shows all added repositories, or content of repository when `-r`

given
update Updates existing repository with new content

7.1 Resource Repository spec

spec is in format {repository_name}/{resource_name}:{version_info}, version_info is optional if omitted, latest (high-
est) will be used. Versions are in Semantic Versioning <http://semver.org/> format. You can also use >, >=, ==, <,
<= operators to specify matches.

7.2 Resource Repository import

Command solar repository import it allows you to import existing repository or directory with resources into your
system. It will traverse source path copy all resources definitions into repository and obviously proper structure will
be automatically created.

Note: You may also check –link option to this command. It will just link repository contents so to import you need
to have proper structure before.

7.3 Resource Repository update

Command solar repository update will update repository content with new data. With –overwrite flag it will overwrite
conflicting resources definitions.

25

Solar Documentation, Release 0.0.1

26 Chapter 7. Resource Repository

CHAPTER 8

Deployment operations

8.1 Stage changes

After user created all required resource - it is possible to automatically detect which resource requires changes with

solar changes stage

8.2 History

After changes are staged - they will be used to populate history which can be previewed with command (n option used
to limit number of items, -1 will return all changes)

solar changes history -n 5

8.3 Prepare deployment plan

User is able to generate deployment scenario based on changes found by system log.

solar changes process

This command will prepare deployment graph, and return uid of deployment graph to work with.

All commands that are able to manipulate deployment graph located in orch namespace.

Tip: Solar writes returned deployment graph uid into special file (.solar_cli_uids), it allows you to use last instead of
full returned uid: solar orch report <uid> becomes solar orch report last

8.4 Report

Report will print all deployment tasks in topological order, with status, and error if status of task is ERROR

solar orch report <uid>

27

Solar Documentation, Release 0.0.1

8.5 Graphviz graph

To see picture of deployment dependencies one can use following command

solar orch dg <uid>

Keep in mind that it is not representation of all edges that are kept in graph, we are using trasitive reduction to leave
only edges that are important for the order of traversal.

8.6 Run deployment

Execute deployment

solar orch run-once <uid>

8.7 Stop deployment

Gracefully stop deployment, after all already scheduled tasks are finished

solar orch stop <uid>

8.8 Resume deployment

Reset SKIPPED tasks to PENDING and continue deployment

solar orch resume <uid>

8.9 Restart deployment

All tasks will be returned to PENDING state, and deployment will be restarted

solar orch restart <uid>

8.10 Retry deployment

Orchestrator will reset all ERROR tasks to PENDING state and restart deployment

solar orch retry <uid>

28 Chapter 8. Deployment operations

CHAPTER 9

Transports

Transports are used by Solar to communicate with managed nodes. Transports are also resources, so they have all
resources features and flexibility. Transports should be added to a node, but if you need you can add different transports
for different resources.

9.1 How it works

Each resource in solar has a random transports_id generated, when resources are connected to each other. Solar
will ensure that correct transport_id is used. Then using this transport_id a correct real value is fetched. Changing
transports contents will not cause resource.update action for related resources.

9.2 Sync transport

This transport uploads required information to target node.

Currently there are following sync transports available:

• ssh

• rsync

• solar_agent

• torrent

9.3 Ssh host key checking

Solar wont disable strict host key checking by default, so before working with solar ensure that strict host key checking
is disabled, or all target hosts added to .ssh/known_hosts file.

Example of .ssh/config

Host 10.0.0.*
StrictHostKeyChecking no

29

Solar Documentation, Release 0.0.1

9.4 Run transport

This transport is responsible for running commands on remote host.

Currently there are following run transports available:

• ssh

• solar_agent

9.5 BAT transport

A transport that will automatically select best available transport (BAT) that is available for a given resource. Currently
it’s default transport in the system, so when you add more transports, everything should configure automatically.

30 Chapter 9. Transports

CHAPTER 10

Ansible Handler

Let’s look into simple hosts_file/actions/run.yaml example

- hosts: [{{host}}]
sudo: yes
tasks:
{% for val in hosts %}
- name: Create hosts entries for {{val['name']}} => {{val['ip']}}

lineinfile:
dest: /etc/hosts
regexp: ".*{{val['name']}}$"
line: "{{val['ip']}} {{val['name']}}"
state: present

{% endfor %}

It’s pretty much standard ansible playbook, but it is processed with jinja2 before ansible is executed.

Solar will create proper inventory

localhost ansible_connection=local user=vagrant location_id="d6255f99dda2fca55177ffad96f390a9" transports_id="2db90247d5d94732448ebc5fdcc9f80d" hosts="[{'ip': u'10.0.0.4', 'name': u'node1'}, {'ip': u'10.0.0.3', 'name': u'node0'}]"

Playbook will be also created

- hosts: [localhost]
sudo: yes
tasks:

- name: Create hosts entries for node1 => 10.0.0.4
lineinfile:

dest: /etc/hosts
regexp: ".*node1$"
line: "10.0.0.4 node1"
state: present

- name: Create hosts entries for node0 => 10.0.0.3
lineinfile:

dest: /etc/hosts
regexp: ".*node0$"
line: "10.0.0.3 node0"
state: present

You may wonder about hosts: [{{host}}], we have our own Transport so we execute ansible like this

ansible-playbook --module-path /tmp/library -i /tmp/tmpkV0U5F/tmpGmLGEwhosts_file2/inventory /tmp/tmpkV0U5F/tmpGmLGEwhosts_file2/runlNjnI3

31

Solar Documentation, Release 0.0.1

32 Chapter 10. Ansible Handler

CHAPTER 11

Examples

11.1 Create resource for the puppet handler

Let’s create an example Resource for the puppet Handler version 1 1. The resource should install and configure
OpenStack Nova API service.

11.1.1 Step 1: Find an appropriate puppet module

The Puppet OpenStack module for Nova provides all of the required functionality.

11.1.2 Step 2: Define granularity level for a resource

One may want to implement resources as atomic entities doing their only single task, like running one and only puppet
manifest 2. Other option might be single entity doing all required tasks instead. In order to configure and run the Nova
API service at least two manifests should be executed: init.pp and api.pp 3.

Assuming the atomic tasks approach, the example resource for Nova API service should only use the api.pp manifest.
Note that the puppet handler is normally executed in its own isolated puppet catalog with its specific hiera data only.
This assumes every puppet manifest called by every action to be executed as a separate puppet run and shares nothing
with other tasks.

11.1.3 Step 3: Define resource inputs

Once the granularity level of the resource is clearly defined, one should define the resource’s Input data. The puppet
class nova::api contains lots of parameters. It looks reasonable to use them as the resource inputs as is.

Note: There is a helper script to convert a puppet class parameters into the format expected by the meta.yaml inputs
file.

1 There is also puppet handler version 2 but it is out of the scope of this example.
2 Puppet manifests may contain references to externally defined classess or services in the catalog. Keep that in mind then designing the resource.
3 This assumes configuring DB and messaging entities like user, password database, vhost, access rights are left out of the scope of this example.

33

https://wiki.openstack.org/wiki/Puppet
https://github.com/openstack/puppet-nova
https://github.com/openstack/puppet-nova/blob/master/manifests/init.pp
https://github.com/openstack/puppet-nova/blob/master/manifests/api.pp
https://github.com/bogdando/convert_puppet_parameters

Solar Documentation, Release 0.0.1

11.1.4 Step 4: Implement basic action run

Each resource should have all of the mandatory actions defined. In this example we define only the ref-action-term
run. With the example of Nova API resource, the action run should:

• fetch the resource inputs from the hiera 4

$resource = hiera($::resource_name)
$ensure_package = $resource['input']['ensure_package']
$auth_strategy = $resource['input']['auth_strategy']

• call the class { ‘nova::api’: } with the required parameters

• implement workarounds for externally referenced entities, like

exec { 'post-nova_config':
command => '/bin/echo "Nova config has changed"',

}

include nova::params

package { 'nova-common':
name => $nova::params::common_package_name,
ensure => $ensure_package,

}

Note: Otherwise, called class would assume the package and exec are already included in the catalog by the init.pp.
And would fail as there is no class { ‘nova’: } call expected for the Nova API resource action run. In order to implement
the resource without such workarounds, one should rethink the granularity scope for the resource. And make sure the
resource contains required inputs for the main nova and nova::api classes and call them both in the resource action
run.

11.1.5 Step 5: Think of the rest of the resource actions

One should also design other actions for the resource. Mandatory are only run, update and remove. There might be
additional ones like on-fail, on-retry or whichever are actually required to implement expected behavior. For the given
API resource there are no specific actions expected and there is nothing to do for the action remove. For the action
update, it is likely the same steps should be done as for the action run.

11.1.6 Step 6: Design the high level functional test

TODO(bogdando) provide details about test.py and writing tests for Nova API in order to verify if it works on the app
level.

11.1.7 Step 7: Think of the deployment composition

The deployment composition is which resources should be used and in which order it should be executed to achive the
expected result, which is a successfull Deployment plan. For the given example, the composition may be as following:

• Install and configure MySQL DB 5

4 The syntax is the puppet handler v1 specific. The v2 allows to query the hiera directly, like $public_vip = hiera(‘public_vip’)
5 Omitted host related steps like OS provisioning, disks and network configuration.

34 Chapter 11. Examples

Solar Documentation, Release 0.0.1

• Install and configure RabbitMQ node

• Install and configure dependency components like OpenStack Keystone

• Create all of the required user/tenant/db/vhost entities and assign rights

• Install and configure Nova main components, like packages, db sync, configs.

• Install and configure Nova API. BINGO! A job for our resource, at last!

Besides the execution plan, there is also data Connection to be considered. For example, one might want to have all
of the OpenStack services to use the common RabbitMQ virtualhost and user. Or have them separated instead. Or use
the clustered RabbitMQ nodes. These decisions will directly impact how resources’ inputs should be connected.

11.1. Create resource for the puppet handler 35

Solar Documentation, Release 0.0.1

36 Chapter 11. Examples

CHAPTER 12

Preparing deployment plan

Solar allows you to make transitions between different versions of infrastructure based on changes found by solar
control plane and events configured between this changes.

12.1 Required information

Inputs TODO link to the page with inputs

Orchestration TODO link to the page with orchestration API details

12.2 Changes

By changes in solar we understand everything that is explicitly made by user (human/program). Examples of changes
are: - create resource - remove resource - update value manually - update value using hierarchy

12.3 Staged changes

On demand solar runs procedure that will find all resources changed from last deployment and will determine list of
actions using transitions from solar state machine .

This procedure is performed by

solar changes stage -d

It prints information like

log task=openrc_file.run uid=e852455d-49d9-41f1-b49c-4640e2e19944
++ ip: 10.0.0.3
++ location_id: 694b35afa622da857f95e14a21599d81
++ keystone_port: 35357
++ transports_id: abc7745f2ad63709b5845cecfa759ff5
++ keystone_host: 10.0.0.3
++ password: admin
++ user_name: admin
++ tenant: admin

log task=neutron_db.run uid=95cac02b-01d0-4e2f-adb9-4205a2cf6dfb
++ login_port: 3306
++ encoding: utf8

37

Solar Documentation, Release 0.0.1

++ login_user: root
++ login_password: mariadb
++ transports_id: abc7745f2ad63709b5845cecfa759ff5
++ db_name: neutron_db
++ db_host: 10.0.0.3
++ ip: 10.0.0.3
++ collation: utf8_general_ci
++ location_id: 694b35afa622da857f95e14a21599d81

At this point information is stored as a list, and user doesn’t know anything about dependencies between found
changes.

12.4 Events usage

For events definition see Event.

Events are used during this procedure to insert dependencies between found changes, and to add new actions that are
reactions for changes.

Example of dependency between changes would be nova service that depends on successful creation of database.

For removal we might add dependencies that will allow reverse order, e.g. when removing nova service and database,
database will be removed only after successful nova service removal.

This can be specified as

Dependency database1.run -> nova1.run
Dependency nova1.remove -> database1.remove

Reaction allows to construct more advanced workflows that will take into account not only changes, but also arbitrary
actions for resources in solar.

Good example of usage is provisioning procedure, where reboot must be done only after node is provisioned, and
dnsmasq configuration changes to reflect that that node is now using statically allocated address. We can specify such
ordering as

React node1.run -> node1.reboot
React node1.run -> dnsmasq1.change_ip
Dependency dnsmasq1.change_ip -> node1.reboot

12.5 Deployment plan construction

Using list of staged changes and graph events we can proceed with construction of deployment plan for current version
of infrastructure

solar changes process

After this deployment command plan can be viewed by

graphviz representation
solar orch dg last

text report
solar orch report last

38 Chapter 12. Preparing deployment plan

CHAPTER 13

FAQ

13.1 Why nodes/transports have hardcoded keys, ips and other in-
puts ?

This is temporary situation, we will improve it in near future.

13.2 I want to use different SSH keys

Just update resource for example:

solar resource update ssh_transport1 '{"ssh_key": "/path/to/some/key"}'

13.3 I want to use passwords not keys

Just update resource:

solar resource update rsync1 '{"password": "vagrant", "key": null}'

Note: You need to change it for all transport resources (ssh and rsync by default).

13.4 How can I run solar worker ?

• If you use vagrant then you can just sudo start solar-worker

as vagrant user.

13.5 How can I configure solar ?

There are several places where we search for config values:

1. .config file in CWD or in path from SOLAR_CONFIG env variable

39

Solar Documentation, Release 0.0.1

2. if env SOLAR_CONFIG_OVERRIDE contains valid path then it override previous values 3. .config.override in
CWD 4. You can also set upper-cased env variable which matches one of those in config

13.6 What database can I use with solar ?

By default for simplicity we use sqlite. On our vagrant environment we use single node riak. You can also use multiple
nodes riak, with some strong consistent buckets.

13.7 Where can I find solar examples ?

Example resources, composer templates and examples itself are located: https://github.com/Mirantis/solar-resources

40 Chapter 13. FAQ

https://github.com/Mirantis/solar-resources

CHAPTER 14

Indices and tables

• search

41

	Installation
	Supported development platforms
	Vagrant environment
	Local environment

	Usage
	Examples
	CLI API

	List of Solar tutorials
	Wordpress tutorial

	Solar Glossary
	Resource
	Handler
	Transport
	Event
	Composer
	System log component
	Orchestration component

	Solar Internal Architecture
	Resource
	Basic resource structure
	Handler
	Input
	Computable Inputs
	Action
	Tag

	Resource Repository
	Resource Repository spec
	Resource Repository import
	Resource Repository update

	Deployment operations
	Stage changes
	History
	Prepare deployment plan
	Report
	Graphviz graph
	Run deployment
	Stop deployment
	Resume deployment
	Restart deployment
	Retry deployment

	Transports
	How it works
	Sync transport
	Ssh host key checking
	Run transport
	BAT transport

	Ansible Handler
	Examples
	Create resource for the puppet handler

	Preparing deployment plan
	Required information
	Changes
	Staged changes
	Events usage
	Deployment plan construction

	FAQ
	Why nodes/transports have hardcoded keys, ips and other inputs ?
	I want to use different SSH keys
	I want to use passwords not keys
	How can I run solar worker ?
	How can I configure solar ?
	What database can I use with solar ?
	Where can I find solar examples ?

	Indices and tables

